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1 Rotation Optimization on SO(3) via Lie Alge-
bra and Anisotropic Sensor Fusion

1.1 Lie group, Lie algebra, and tangent space

We model the rover attitude by a rotation matrix

R ∈ SO(3) =
{
R ∈ R3×3

∣∣R⊤R = I, detR = 1
}
.

The associated Lie algebra is

so(3) =
{
Ω ∈ R3×3

∣∣Ω⊤ = −Ω
}
,

which is a three-dimensional vector space. Using the standard “hat” operator

·̂ : R3 → so(3), ω =

ω1

ω2

ω3

 7→ ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,

any element of so(3) can be written as ω̂ for some ω ∈ R3.
A smooth curve on SO(3) through a point R can be written as

R(t) = R exp
(
t ω̂
)
, t ∈ R,

where exp : so(3) → SO(3) is the matrix exponential. By differentiating at
t = 0 we obtain the tangent vector

Ṙ(0) =
d

dt
R exp

(
t ω̂
)∣∣∣∣

t=0

= R ω̂.

Thus the tangent space at R is

TRSO(3) =
{
RΩ

∣∣Ω ∈ so(3)
}
,

which is isomorphic to so(3) itself. In other words, infinitesimal rotations ω̂ ∈
so(3) can be viewed as directions in the tangent space TRSO(3) at any R ∈
SO(3).

In our rover, the wheel encoders generate high-frequency pulse signals. As a
consequence, the rotational increment between successive control cycles is very
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small. Therefore it is natural to treat each update as an infinitesimal rotation on
the Lie algebra so(3) rather than as an arbitrary finite rotation. Let Rk ∈ SO(3)
be the attitude at time step k, and let ωk ∈ R3 be the angular velocity estimated
from encoder pulses over the sampling interval ∆t. Then the predicted attitude
is

Rpred
k+1 = Rk exp

(
ω̂k∆t

)
, (1)

which is precisely an integration on the tangent space TRk
SO(3) via the expo-

nential map.

1.2 Sensor models and residuals

To correct the encoder prediction and obtain a statistically consistent estimate
of the pose, we fuse three heterogeneous sensors:

• ARCore pose (Rar, tar): low-rate but globally consistent 6-DoF pose.

• Gravity vector gmeas in the body frame: constrains roll and pitch.

• Magnetic field mmeas in the body frame: constrains yaw.

We assume known reference directions g0,m0 in the world frame. Given a
candidate pose (R, t) ∈ SE(3), these references appear in the body frame as

gpred = R⊤g0, mpred = R⊤m0.

1.2.1 ARCore pose residual

The ARCore pose provides a full SE(3) measurement. The rotational part is
compared on SO(3) via the logarithm map

Log : SO(3)→ so(3) ∼= R3,

which yields the minimal three-dimensional representation of the relative rota-
tion. The residual is

rar(R, t) =

(
Log
(
(Rar)⊤R

)
t− tar

)
∈ R6. (2)

1.2.2 Unit-vector residuals for gravity and magnetometer

For a world-frame reference unit vector v0 (gravity or magnetic north), the
predicted body-frame direction is vpred = R⊤v0 and the measured body-frame
direction is vmeas. We normalize both vectors and define

apred =
vpred

∥vpred∥
, ameas =

vmeas

∥vmeas∥
.

A small rotation that aligns apred with ameas is well approximated by the cross
product

r = apred × ameas ∈ R3.
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Geometrically, r is an infinitesimal rotation vector in so(3) ∼= R3 that rotates
the predicted direction toward the measured one. We use the same form for
both gravity and magnetometer:

rg(R) = apred
g × ameas

g ∈ R3, (3)

rm(R) = apred
m × ameas

m ∈ R3. (4)

The Jacobian of these residuals with respect to a small rotation δθ ∈ R3 is
a 3× 3 matrix

Jw =
∂r

∂(δθ)
∈ R3×3, (5)

which is evaluated analytically in the implementation and used to construct the
normal equations.

1.3 Anisotropic Mahalanobis distance and maximum like-
lihood

Each sensor has anisotropic noise characteristics: some directions in R3 (or R6)
are more reliable than others. We represent this by a positive-definite covariance
matrix for each residual:

Σar ∈ R6×6, Σg ∈ R3×3, Σm ∈ R3×3.

Their inverses
Sar = Σ−1

ar , Sg = Σ−1
g , Sm = Σ−1

m

encode the anisotropic weights. For example, a gravity covariance of the form

Σg = Rg

σ2
⊥ 0 0
0 σ2

∥ 0

0 0 σ2
∥

R⊤
g

means that the component orthogonal to gravity (tilt) is more strictly penalized
than components parallel to gravity (yaw), if σ2

⊥ ≪ σ2
∥.

Assuming zero-mean Gaussian noise, the negative log-likelihood of a state
(R, t) given the measurements is, up to an additive constant, the sum of Maha-
lanobis distances:

J(R, t) = rar(R, t)⊤Sar rar(R, t)︸ ︷︷ ︸
ARCore pose

+ rg(R)⊤Sg rg(R)︸ ︷︷ ︸
gravity

+ rm(R)⊤Sm rm(R)︸ ︷︷ ︸
magnetometer

. (6)

This functional explicitly incorporates the anisotropy of each sensor.
The maximum-likelihood (and, under a Gaussian prior, MAP) estimate is

then
(R∗, t∗) = arg min

R∈SO(3), t∈R3
J(R, t). (7)

Thus the “decision rule” for the rover orientation is minimization of the sum of
Mahalanobis distances over SE(3).
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1.4 Gauss–Newton on SE(3)

We now describe the concrete optimization procedure on the Lie group SE(3).
Let the current estimate be (R, t), and parametrize a small increment in the Lie
algebra by

δξ =

(
δθ

δρ

)
∈ R6,

where δθ ∈ R3 is a small rotation vector and δρ ∈ R3 is a small translation.
Using the right-invariant update

R← R exp
(
δ̂θ
)
, t← t+ δρ, (8)

we ensure that R stays on SO(3) at every iteration.
Let ri(R, t) denote any of the residuals rar, rg, rm. For a small perturbation

δξ, we linearize
ri(R⊕ δξ) ≈ ri(R) + Jiδξ,

where Ji = ∂ri/∂δξ is the Jacobian. Substituting this into the cost (6) and
ignoring higher-order terms, we obtain a quadratic approximation

J(R⊕ δξ, t⊕ δξ) ≈ J(R, t) + b⊤δξ + 1
2δξ

⊤H δξ,

with the normal-equation matrix H and vector b given by

H =
∑
i

J⊤
i SiJi, b =

∑
i

J⊤
i Si ri(R, t),

where Si is the corresponding inverse covariance.
The Gauss–Newton step δξ is obtained by solving

H δξ = −b. (9)

We then apply the Lie-algebra update (8) and repeat until the increment is
sufficiently small:

∥δθ∥ < εrot, ∥δρ∥ < εtrans.

In the actual implementation, H is a 6×6 symmetric positive-definite matrix.
We factor it by Cholesky decomposition H = LL⊤ and solve (9) via forward
and backward substitution to obtain δξ. The inverse H−1 can be computed
from L if an approximate pose covariance is required.

1.5 Levenberg–Marquardt damping

Pure Gauss–Newton may become unstable when the linearization is poor or
when the problem is ill-conditioned. Levenberg–Marquardt (LM) improves ro-
bustness by adding a damping term to the normal equations:

(H + λI) δξ = −b, λ > 0. (10)

For large λ, the step is small and close to gradient descent; for λ → 0, the
method reduces to Gauss–Newton. A typical LM algorithm proceeds as follows:

1. Initialize λ (e.g. based on the diagonal of H).
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2. Solve (10) for δξ and compute a tentative update.

3. Evaluate the actual reduction in J and compare it with the predicted
reduction from the quadratic model.

4. If the step is successful (sufficient reduction), accept the update and de-
crease λ. Otherwise reject the update and increase λ.

This adaptive damping realizes a compromise between (i) fast convergence near
the optimum and (ii) robustness when far from the optimum.

In our rover, the LM idea is used in a lightweight form: a small positive
value is added to the diagonal of H when the Cholesky decomposition fails,
which corresponds to (10) with a fixed λ. This stabilizes the optimization while
keeping the computation cost suitable for real-time mobile execution.

1.6 Summary

• The encoder pulses are integrated on the Lie algebra so(3) using the expo-
nential map (1), which is justified by the small rotational increments and
the interpretation of so(3) as the tangent space TRSO(3) at each attitude
R.

• ARCore, gravity, and magnetometer measurements are converted into
residuals rar, rg, rm defined on SE(3) and so(3).

• Their anisotropic uncertainties are encoded by covariance matrices Σar,Σg,Σm,
and the total cost is the sum of Mahalanobis distances (6).

• The maximum-likelihood estimate (7) is obtained by solving the non-
linear least-squares problem on SE(3) via Gauss–Newton / Levenberg–
Marquardt iterations on the Lie algebra, using the right-invariant update
(8).

This completes the description of how infinitesimal rotations on the Lie al-
gebra, anisotropic Mahalanobis distances, and a Lie-algebra based maximum-
likelihood estimator (with LM damping) are combined for orientation control of
the rover.
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