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1 Rotation Optimization on SO(3) via Lie Alge-
bra and Anisotropic Sensor Fusion

1.1 Lie group, Lie algebra, and tangent space

We model the rover attitude by a rotation matrix
ReSOB)={ReR*®|R'TR=1I, detR=1}.
The associated Lie algebra is
s0(3) = {QeR¥3 QT = -},

which is a three-dimensional vector space. Using the standard “hat” operator

w1 0 —Ws w2
/'\ZRS —)50(3), w = | Wy — W= w3 0 —wi |,
w3 —Wy w1 0

any element of 50(3) can be written as @ for some w € R3.
A smooth curve on SO(3) through a point R can be written as

R(t) = Rexp(t @), t e R,

where exp : s0(3) — SO(3) is the matrix exponential. By differentiating at
t = 0 we obtain the tangent vector

R(0) = %Rexp(t&?) = R&.
t=0

Thus the tangent space at R is
TrSO(3) = { RQ|Q € s0(3)},

which is isomorphic to so(3) itself. In other words, infinitesimal rotations & €
50(3) can be viewed as directions in the tangent space TRSO(3) at any R €
SO(3).

In our rover, the wheel encoders generate high-frequency pulse signals. As a
consequence, the rotational increment between successive control cycles is very



small. Therefore it is natural to treat each update as an infinitesimal rotation on
the Lie algebra so(3) rather than as an arbitrary finite rotation. Let Ry € SO(3)
be the attitude at time step k, and let w;, € R? be the angular velocity estimated
from encoder pulses over the sampling interval At. Then the predicted attitude
is

R}ifﬁi = R exp(w/kE), (1)

which is precisely an integration on the tangent space Tg, SO(3) via the expo-
nential map.

1.2 Sensor models and residuals

To correct the encoder prediction and obtain a statistically consistent estimate
of the pose, we fuse three heterogeneous sensors:

e ARCore pose (R, t*): low-rate but globally consistent 6-DoF pose.

meas

e Gravity vector g in the body frame: constrains roll and pitch.

e Magnetic field m™® in the body frame: constrains yaw.

We assume known reference directions gg, mg in the world frame. Given a
candidate pose (R,t) € SE(3), these references appear in the body frame as

gpred — RTQO» mpred — RTmo.

1.2.1 ARCore pose residual

The ARCore pose provides a full SE(3) measurement. The rotational part is
compared on SO(3) via the logarithm map

Log : SO(3) — s0(3) = R?,

which yields the minimal three-dimensional representation of the relative rota-

tion. The residual is
Log((R*™)TR
rar(R,t)< g(t( ta)r )> € RS. 2)

1.2.2 Unit-vector residuals for gravity and magnetometer

For a world-frame reference unit vector vy (gravity or magnetic north), the
predicted body-frame direction is vP**d = RT vy and the measured body-frame
direction is v™°*. We normalize both vectors and define

apred — ,Upred , a™eas — ,Ume'as‘ )
[oPred]] [[omeas]|

A small rotation that aligns aP™? with a™e2®

product

is well approximated by the cross

r = apred x @™eds ¢ R3.



Geometrically, 7 is an infinitesimal rotation vector in so(3) = R3 that rotates
the predicted direction toward the measured one. We use the same form for
both gravity and magnetometer:

’l"g(R) _ agred % algneas c RS, (3)
Tm(R) = alr*d x @™ ¢ R3. (4)

The Jacobian of these residuals with respect to a small rotation 60 € R3 is
a 3 x 3 matrix

or
T = e R3*3, 5
o= 557 (5)
which is evaluated analytically in the implementation and used to construct the
normal equations.

1.3 Anisotropic Mahalanobis distance and maximum like-
lihood

Each sensor has anisotropic noise characteristics: some directions in R? (or R6)
are more reliable than others. We represent this by a positive-definite covariance
matrix for each residual:

Tar ERC B e R*3 ¥, € R¥X3,

Their inverses

S =35 Sg=3%, Sn=3.

encode the anisotropic weights. For example, a gravity covariance of the form

o2 0 0
S,=R, [ 0 aﬁ 0 R;
0 0 oﬁ

means that the component orthogonal to gravity (tilt) is more strictly penalized
than components parallel to gravity (yaw), if 02 < aﬁ.

Assuming zero-mean Gaussian noise, the negative log-likelihood of a state
(R, t) given the measurements is, up to an additive constant, the sum of Maha-
lanobis distances:

J(R,t) = rar(R,t) " Sar rar (R, t) + 74 (R) " Syrg(R) + 1 (R) T Sy (R) . (6)

ARCore pose gravity magnetometer

This functional explicitly incorporates the anisotropy of each sensor.
The maximum-likelihood (and, under a Gaussian prior, MAP) estimate is
then
R*,t") = ar min J(R,t). 7
( ) gReSO(3),teR3 ( ) ( )
Thus the “decision rule” for the rover orientation is minimization of the sum of
Mahalanobis distances over SE(3).



1.4 Gauss—Newton on SE(3)

We now describe the concrete optimization procedure on the Lie group SE(3).
Let the current estimate be (R, t), and parametrize a small increment in the Lie

algebra by
00
8¢ = < ) € RS,
op

where 60 € R? is a small rotation vector and §p € R? is a small translation.
Using the right-invariant update

R« Rexp(gb), t«—t+0p, (8)

we ensure that R stays on SO(3) at every iteration.
Let r;(R,t) denote any of the residuals r,;,rg, 7. For a small perturbation
0&, we linearize
ri(R® 68) = ri(R) + J;d¢,

where J; = Or;/06¢ is the Jacobian. Substituting this into the cost (6) and
ignoring higher-order terms, we obtain a quadratic approximation

J(R& 66, t® 68) ~ J(R,t) +b' 66+ $0¢" H ¢,

with the normal-equation matrix H and vector b given by

H=> J'SiJi,  b=>Y JTSir(R1),

where S; is the corresponding inverse covariance.
The Gauss—Newton step € is obtained by solving

H 6¢ = —b. (9)

We then apply the Lie-algebra update (8) and repeat until the increment is
sufficiently small:
H(SGH < Erot ||5PH < Etrans-

In the actual implementation, H is a 6 X6 symmetric positive-definite matrix.
We factor it by Cholesky decomposition H = LLT and solve (9) via forward
and backward substitution to obtain 6¢. The inverse H~! can be computed
from L if an approximate pose covariance is required.

1.5 Levenberg—Marquardt damping

Pure Gauss—Newton may become unstable when the linearization is poor or
when the problem is ill-conditioned. Levenberg—Marquardt (LM) improves ro-
bustness by adding a damping term to the normal equations:

(H+ )66 =—-b,  XA>0. (10)

For large A, the step is small and close to gradient descent; for A — 0, the
method reduces to Gauss—Newton. A typical LM algorithm proceeds as follows:

1. Initialize A\ (e.g. based on the diagonal of H).



2. Solve (10) for 6¢ and compute a tentative update.

3. Evaluate the actual reduction in J and compare it with the predicted
reduction from the quadratic model.

4. If the step is successful (sufficient reduction), accept the update and de-
crease \. Otherwise reject the update and increase .

This adaptive damping realizes a compromise between (7) fast convergence near
the optimum and (i¢) robustness when far from the optimum.

In our rover, the LM idea is used in a lightweight form: a small positive
value is added to the diagonal of H when the Cholesky decomposition fails,
which corresponds to (10) with a fixed A. This stabilizes the optimization while
keeping the computation cost suitable for real-time mobile execution.

1.6 Summary

e The encoder pulses are integrated on the Lie algebra s0(3) using the expo-
nential map (1), which is justified by the small rotational increments and
the interpretation of s0(3) as the tangent space TrRSO(3) at each attitude
R.

e ARCore, gravity, and magnetometer measurements are converted into
residuals rar, rg, rym, defined on SE(3) and so(3).

e Their anisotropic uncertainties are encoded by covariance matrices Y, Xg, X,
and the total cost is the sum of Mahalanobis distances (6).

e The maximum-likelihood estimate (7) is obtained by solving the non-
linear least-squares problem on SFE(3) via Gauss-Newton / Levenberg—
Marquardt iterations on the Lie algebra, using the right-invariant update

(8)-

This completes the description of how infinitesimal rotations on the Lie al-
gebra, anisotropic Mahalanobis distances, and a Lie-algebra based maximum-
likelihood estimator (with LM damping) are combined for orientation control of
the rover.



