

Attitude Control by Lie Algebra and Anisotropic Sensor Fusion

Nobuaki Tanaka

November 16, 2025

1 Rotation Optimization on $SO(3)$ via Lie Algebra and Anisotropic Sensor Fusion

1.1 Lie group, Lie algebra, and tangent space

We model the rover attitude by a rotation matrix

$$R \in SO(3) = \{ R \in \mathbb{R}^{3 \times 3} \mid R^\top R = I, \det R = 1 \}.$$

The associated Lie algebra is

$$\mathfrak{so}(3) = \{ \Omega \in \mathbb{R}^{3 \times 3} \mid \Omega^\top = -\Omega \},$$

which is a three-dimensional vector space. Using the standard “hat” operator

$$\hat{\cdot} : \mathbb{R}^3 \rightarrow \mathfrak{so}(3), \quad \boldsymbol{\omega} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \mapsto \hat{\boldsymbol{\omega}} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix},$$

any element of $\mathfrak{so}(3)$ can be written as $\hat{\boldsymbol{\omega}}$ for some $\boldsymbol{\omega} \in \mathbb{R}^3$.

A smooth curve on $SO(3)$ through a point R can be written as

$$R(t) = R \exp(t \hat{\boldsymbol{\omega}}), \quad t \in \mathbb{R},$$

where $\exp : \mathfrak{so}(3) \rightarrow SO(3)$ is the matrix exponential. By differentiating at $t = 0$ we obtain the tangent vector

$$\dot{R}(0) = \frac{d}{dt} R \exp(t \hat{\boldsymbol{\omega}}) \Big|_{t=0} = R \hat{\boldsymbol{\omega}}.$$

Thus the tangent space at R is

$$T_R SO(3) = \{ R \Omega \mid \Omega \in \mathfrak{so}(3) \},$$

which is isomorphic to $\mathfrak{so}(3)$ itself. In other words, infinitesimal rotations $\hat{\boldsymbol{\omega}} \in \mathfrak{so}(3)$ can be viewed as directions in the tangent space $T_R SO(3)$ at any $R \in SO(3)$.

In our rover, the wheel encoders generate high-frequency pulse signals. As a consequence, the rotational increment between successive control cycles is very

small. Therefore it is natural to treat each update as an infinitesimal rotation on the Lie algebra $\mathfrak{so}(3)$ rather than as an arbitrary finite rotation. Let $R_k \in SO(3)$ be the attitude at time step k , and let $\omega_k \in \mathbb{R}^3$ be the angular velocity estimated from encoder pulses over the sampling interval Δt . Then the predicted attitude is

$$R_{k+1}^{\text{pred}} = R_k \exp(\widehat{\omega_k \Delta t}), \quad (1)$$

which is precisely an integration on the tangent space $T_{R_k} SO(3)$ via the exponential map.

1.2 Sensor models and residuals

To correct the encoder prediction and obtain a statistically consistent estimate of the pose, we fuse three heterogeneous sensors:

- ARCore pose $(R^{\text{ar}}, \mathbf{t}^{\text{ar}})$: low-rate but globally consistent 6-DoF pose.
- Gravity vector \mathbf{g}^{meas} in the body frame: constrains roll and pitch.
- Magnetic field \mathbf{m}^{meas} in the body frame: constrains yaw.

We assume known reference directions $\mathbf{g}_0, \mathbf{m}_0$ in the world frame. Given a candidate pose $(R, \mathbf{t}) \in SE(3)$, these references appear in the body frame as

$$\mathbf{g}^{\text{pred}} = R^\top \mathbf{g}_0, \quad \mathbf{m}^{\text{pred}} = R^\top \mathbf{m}_0.$$

1.2.1 ARCore pose residual

The ARCore pose provides a full $SE(3)$ measurement. The rotational part is compared on $SO(3)$ via the logarithm map

$$\text{Log} : SO(3) \rightarrow \mathfrak{so}(3) \cong \mathbb{R}^3,$$

which yields the minimal three-dimensional representation of the relative rotation. The residual is

$$r_{\text{ar}}(R, \mathbf{t}) = \begin{pmatrix} \text{Log}((R^{\text{ar}})^\top R) \\ \mathbf{t} - \mathbf{t}^{\text{ar}} \end{pmatrix} \in \mathbb{R}^6. \quad (2)$$

1.2.2 Unit-vector residuals for gravity and magnetometer

For a world-frame reference unit vector \mathbf{v}_0 (gravity or magnetic north), the predicted body-frame direction is $\mathbf{v}^{\text{pred}} = R^\top \mathbf{v}_0$ and the measured body-frame direction is \mathbf{v}^{meas} . We normalize both vectors and define

$$\mathbf{a}^{\text{pred}} = \frac{\mathbf{v}^{\text{pred}}}{\|\mathbf{v}^{\text{pred}}\|}, \quad \mathbf{a}^{\text{meas}} = \frac{\mathbf{v}^{\text{meas}}}{\|\mathbf{v}^{\text{meas}}\|}.$$

A small rotation that aligns \mathbf{a}^{pred} with \mathbf{a}^{meas} is well approximated by the cross product

$$\mathbf{r} = \mathbf{a}^{\text{pred}} \times \mathbf{a}^{\text{meas}} \in \mathbb{R}^3.$$

Geometrically, \mathbf{r} is an infinitesimal rotation vector in $\mathfrak{so}(3) \cong \mathbb{R}^3$ that rotates the predicted direction toward the measured one. We use the same form for both gravity and magnetometer:

$$r_g(R) = \mathbf{a}_g^{\text{pred}} \times \mathbf{a}_g^{\text{meas}} \in \mathbb{R}^3, \quad (3)$$

$$r_m(R) = \mathbf{a}_m^{\text{pred}} \times \mathbf{a}_m^{\text{meas}} \in \mathbb{R}^3. \quad (4)$$

The Jacobian of these residuals with respect to a small rotation $\delta\theta \in \mathbb{R}^3$ is a 3×3 matrix

$$J_w = \frac{\partial \mathbf{r}}{\partial (\delta\theta)} \in \mathbb{R}^{3 \times 3}, \quad (5)$$

which is evaluated analytically in the implementation and used to construct the normal equations.

1.3 Anisotropic Mahalanobis distance and maximum likelihood

Each sensor has anisotropic noise characteristics: some directions in \mathbb{R}^3 (or \mathbb{R}^6) are more reliable than others. We represent this by a positive-definite covariance matrix for each residual:

$$\Sigma_{\text{ar}} \in \mathbb{R}^{6 \times 6}, \quad \Sigma_g \in \mathbb{R}^{3 \times 3}, \quad \Sigma_m \in \mathbb{R}^{3 \times 3}.$$

Their inverses

$$S_{\text{ar}} = \Sigma_{\text{ar}}^{-1}, \quad S_g = \Sigma_g^{-1}, \quad S_m = \Sigma_m^{-1}$$

encode the anisotropic weights. For example, a gravity covariance of the form

$$\Sigma_g = R_g \begin{pmatrix} \sigma_{\perp}^2 & 0 & 0 \\ 0 & \sigma_{\parallel}^2 & 0 \\ 0 & 0 & \sigma_{\parallel}^2 \end{pmatrix} R_g^{\top}$$

means that the component orthogonal to gravity (tilt) is more strictly penalized than components parallel to gravity (yaw), if $\sigma_{\perp}^2 \ll \sigma_{\parallel}^2$.

Assuming zero-mean Gaussian noise, the negative log-likelihood of a state (R, \mathbf{t}) given the measurements is, up to an additive constant, the sum of Mahalanobis distances:

$$J(R, \mathbf{t}) = \underbrace{r_{\text{ar}}(R, \mathbf{t})^{\top} S_{\text{ar}} r_{\text{ar}}(R, \mathbf{t})}_{\text{ARCore pose}} + \underbrace{r_g(R)^{\top} S_g r_g(R)}_{\text{gravity}} + \underbrace{r_m(R)^{\top} S_m r_m(R)}_{\text{magnetometer}}. \quad (6)$$

This functional explicitly incorporates the anisotropy of each sensor.

The maximum-likelihood (and, under a Gaussian prior, MAP) estimate is then

$$(R^*, \mathbf{t}^*) = \arg \min_{R \in SO(3), \mathbf{t} \in \mathbb{R}^3} J(R, \mathbf{t}). \quad (7)$$

Thus the “decision rule” for the rover orientation is *minimization of the sum of Mahalanobis distances over $SE(3)$* .

1.4 Gauss–Newton on $SE(3)$

We now describe the concrete optimization procedure on the Lie group $SE(3)$. Let the current estimate be (R, \mathbf{t}) , and parametrize a small increment in the Lie algebra by

$$\delta\xi = \begin{pmatrix} \delta\boldsymbol{\theta} \\ \delta\boldsymbol{\rho} \end{pmatrix} \in \mathbb{R}^6,$$

where $\delta\boldsymbol{\theta} \in \mathbb{R}^3$ is a small rotation vector and $\delta\boldsymbol{\rho} \in \mathbb{R}^3$ is a small translation. Using the right-invariant update

$$R \leftarrow R \exp(\widehat{\delta\boldsymbol{\theta}}), \quad \mathbf{t} \leftarrow \mathbf{t} + \delta\boldsymbol{\rho}, \quad (8)$$

we ensure that R stays on $SO(3)$ at every iteration.

Let $r_i(R, \mathbf{t})$ denote any of the residuals r_{ar}, r_g, r_m . For a small perturbation $\delta\xi$, we linearize

$$r_i(R \oplus \delta\xi) \approx r_i(R) + J_i \delta\xi,$$

where $J_i = \partial r_i / \partial \delta\xi$ is the Jacobian. Substituting this into the cost (6) and ignoring higher-order terms, we obtain a quadratic approximation

$$J(R \oplus \delta\xi, \mathbf{t} \oplus \delta\xi) \approx J(R, \mathbf{t}) + \mathbf{b}^\top \delta\xi + \frac{1}{2} \delta\xi^\top H \delta\xi,$$

with the normal-equation matrix H and vector \mathbf{b} given by

$$H = \sum_i J_i^\top S_i J_i, \quad \mathbf{b} = \sum_i J_i^\top S_i r_i(R, \mathbf{t}),$$

where S_i is the corresponding inverse covariance.

The Gauss–Newton step $\delta\xi$ is obtained by solving

$$H \delta\xi = -\mathbf{b}. \quad (9)$$

We then apply the Lie-algebra update (8) and repeat until the increment is sufficiently small:

$$\|\delta\boldsymbol{\theta}\| < \varepsilon_{\text{rot}}, \quad \|\delta\boldsymbol{\rho}\| < \varepsilon_{\text{trans}}.$$

In the actual implementation, H is a 6×6 symmetric positive-definite matrix. We factor it by Cholesky decomposition $H = LL^\top$ and solve (9) via forward and backward substitution to obtain $\delta\xi$. The inverse H^{-1} can be computed from L if an approximate pose covariance is required.

1.5 Levenberg–Marquardt damping

Pure Gauss–Newton may become unstable when the linearization is poor or when the problem is ill-conditioned. Levenberg–Marquardt (LM) improves robustness by adding a damping term to the normal equations:

$$(H + \lambda I) \delta\xi = -\mathbf{b}, \quad \lambda > 0. \quad (10)$$

For large λ , the step is small and close to gradient descent; for $\lambda \rightarrow 0$, the method reduces to Gauss–Newton. A typical LM algorithm proceeds as follows:

1. Initialize λ (e.g. based on the diagonal of H).

2. Solve (10) for $\delta\xi$ and compute a tentative update.
3. Evaluate the actual reduction in J and compare it with the predicted reduction from the quadratic model.
4. If the step is successful (sufficient reduction), accept the update and decrease λ . Otherwise reject the update and increase λ .

This adaptive damping realizes a compromise between (*i*) fast convergence near the optimum and (*ii*) robustness when far from the optimum.

In our rover, the LM idea is used in a lightweight form: a small positive value is added to the diagonal of H when the Cholesky decomposition fails, which corresponds to (10) with a fixed λ . This stabilizes the optimization while keeping the computation cost suitable for real-time mobile execution.

1.6 Summary

- The encoder pulses are integrated on the Lie algebra $\mathfrak{so}(3)$ using the exponential map (1), which is justified by the small rotational increments and the interpretation of $\mathfrak{so}(3)$ as the tangent space $T_R SO(3)$ at each attitude R .
- ARCore, gravity, and magnetometer measurements are converted into residuals r_{ar}, r_g, r_m defined on $SE(3)$ and $\mathfrak{so}(3)$.
- Their anisotropic uncertainties are encoded by covariance matrices $\Sigma_{\text{ar}}, \Sigma_g, \Sigma_m$, and the total cost is the sum of Mahalanobis distances (6).
- The maximum-likelihood estimate (7) is obtained by solving the non-linear least-squares problem on $SE(3)$ via Gauss–Newton / Levenberg–Marquardt iterations on the Lie algebra, using the right-invariant update (8).

This completes the description of how infinitesimal rotations on the Lie algebra, anisotropic Mahalanobis distances, and a Lie-algebra based maximum-likelihood estimator (with LM damping) are combined for orientation control of the rover.