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1 Basics of triangulation and camera motion pa-
rameters

We fix a world coordinate system XY Z and call it the world coordinate system.
For each camera, we define a camera coordinate system whose origin is at the
optical center Olens and whose z–axis is aligned with the optical axis of the lens.

The pose (position and orientation) of a camera is described by rotation and
translation parameters. We denote by R ∈ SO(3) the rotation matrix, and by
t ∈ R3 the translation of the camera center in the world frame. The pair

{R, t}

is called the motion parameters of the camera.
For a 3D point in the world

X =


X

Y

Z

1

 ∈ P3,

its image on the camera sensor is denoted by the (homogeneous) image point

u =

x

y

1

 ∈ P2.

Assuming a pinhole camera model with focal length f0 and the principal
point at the origin, the projection from X to u is written as

λ

x

y

1

 = P


X

Y

Z

1

 , (1)

where P ∈ R3×4 is the camera matrix and λ ̸= 0 is a scalar projective factor.
Writing

P =

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

 ,

each row of (1) gives one scalar equation. Eliminating the scale factor λ yields
linear equations in X,Y, Z.
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Linear triangulation with explicit matrices T and p

We consider two calibrated cameras observing the same 3D point. Let their
camera matrices be

P (1) =

P
(1)
11 P

(1)
12 P

(1)
13 P

(1)
14

P
(1)
21 P

(1)
22 P

(1)
23 P

(1)
24

P
(1)
31 P

(1)
32 P

(1)
33 P

(1)
34

 , P (2) =

P
(2)
11 P

(2)
12 P

(2)
13 P

(2)
14

P
(2)
21 P

(2)
22 P

(2)
23 P

(2)
24

P
(2)
31 P

(2)
32 P

(2)
33 P

(2)
34

 .

Let the image coordinates of the point in the two images be

(x1, y1) in the first image, (x2, y2) in the second image,

and let f0 be the (known) focal length of both cameras.1

From the projection equation (1) for each camera, and after eliminating the
scale factors, we obtain four linear equations in (X,Y, Z). These can be written
compactly as

T Xxyz + p ≈ 0,

where

Xxyz =

X

Y

Z

 , T ∈ R4×3, p ∈ R4.

Using the component-wise pattern you specified, the entries of T and p are
explicitly given by

T =


f0P

(1)
11 − x1P

(1)
31 f0P

(1)
12 − x1P

(1)
32 f0P

(1)
13 − x1P

(1)
33

f0P
(1)
21 − y1P

(1)
31 f0P

(1)
22 − y1P

(1)
32 f0P

(1)
23 − y1P

(1)
33

f0P
(2)
11 − x2P

(2)
31 f0P

(2)
12 − x2P

(2)
32 f0P

(2)
13 − x2P

(2)
33

f0P
(2)
21 − y2P

(2)
31 f0P

(2)
22 − y2P

(2)
32 f0P

(2)
23 − y2P

(2)
33

 ,

p =


f0P

(1)
14 − x1P

(1)
34

f0P
(1)
24 − y1P

(1)
34

f0P
(2)
14 − x2P

(2)
34

f0P
(2)
24 − y2P

(2)
34

 .

The least–squares solution of this overdetermined system is obtained by
solving the normal equations

(T⊤T )Xxyz = −T⊤p, (2)

which yields the estimate of the 3D position (X,Y, Z) of the point.

1Here we assume a simple intrinsic model with a single focal length f0 and the principal
point at the origin. More general intrinsics can be absorbed into P (1), P (2), but the following
form is convenient for our derivation.
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2 Conventional triangulation and pattern–projector-
based triangulation

Camera matrices P, P ′ from motion parameters {R, t}
We consider a two-view setup and use the first camera as the world reference
frame. The world coordinate system coincides with the first camera coordinate
system.

Let the first camera have focal length f and intrinsic matrix

K =

f 0 0
0 f 0
0 0 1

 .

Since the first camera is placed at the origin with identity orientation, its camera
matrix is

P = K[ I3 | 0 ]. (3)

The pose of the second camera is described by the motion parameters

R ∈ SO(3), t ∈ R3,

which we define as the rigid transform from the second camera coordinate system
to the world coordinate system:

Xw = RX ′
c + t, (4)

where X ′
c denotes coordinates in the second camera frame and Xw denotes

coordinates in the world (first-camera) frame.
From (4), the inverse transform (world to second-camera coordinates) is

X ′
c = R⊤(Xw − t). (5)

In homogeneous coordinates this can be written as

X ′
c =

[
R⊤ −R⊤t

]
Xh

w, Xh
w =


X
Y
Z
1

 .

Let the second camera have focal length f ′ and intrinsic matrix

K ′ =

f ′ 0 0
0 f ′ 0
0 0 1

 .

Then the camera matrix of the second view is given by

P ′ = K ′ [R⊤ | −R⊤t ]. (6)

In this parametrization, the relative transform from the first camera frame
(world frame) to the second camera frame is

X ′
c = RrelXc + trel, Rrel = R⊤, trel = −R⊤t.

The pair of camera matrices (P, P ′) is thus uniquely determined by the intrinsics
(K,K ′) and the motion parameters {R, t}.
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Epipolar geometry and optimal correction of correspon-
dences

Let x = (u, v, 1)⊤ and x′ = (u′, v′, 1)⊤ be homogeneous image points in the first
and second images, respectively. We define the normalized image coordinates

x̃ = K−1x, x̃′ = K ′−1x′,

which live in the respective camera coordinate systems up to scale.
Given the relative motion parameters

Rrel = R⊤, trel = −R⊤t,

the essential matrix is
E = [trel]×Rrel ∈ R3×3, (7)

where [trel]× is the 3× 3 skew-symmetric matrix

[trel]× =

 0 −trel,z trel,y
trel,z 0 −trel,x
−trel,y trel,x 0

 .

The normalized points satisfy the epipolar constraint

x̃′⊤E x̃ = 0. (8)

In pixel coordinates, the corresponding fundamental matrix F is

F = K ′−⊤EK−1, (9)

and any noise-free correspondence (x,x′) satisfies

x′⊤F x = 0. (10)

In practice, detected correspondences are noisy and do not exactly satisfy
(10). To obtain correspondences that are consistent with the epipolar geometry,
we apply an optimal correction based on the epipolar line equation.

Projection onto the epipolar line. Let x be fixed and consider correcting
x′. The epipolar line in the second image corresponding to x is

ℓ′ = Fx =

a

b

c

 ,

so that any point y′ = (u′, v′, 1)⊤ on this line satisfies

ℓ′⊤y′ = au′ + bv′ + c = 0.

Given a noisy correspondence x′ = (u′, v′, 1)⊤, the closest point x′
corr on the

epipolar line ℓ′ in the Euclidean sense is obtained by orthogonal projection:

d′ = au′ + bv′ + c, (11)

u′
corr = u′ − a

d′

a2 + b2
, (12)

v′corr = v′ − b
d′

a2 + b2
. (13)
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The corrected homogeneous point is

x′
corr =

u′
corr

v′corr
1

 ,

which satisfies the epipolar constraint up to numerical precision:

x′
corr

⊤F x ≈ 0.

Symmetric correction. Similarly, one can project x onto the epipolar line
in the first image

ℓ = F⊤x′ =

a′

b′

c′

 ,

and obtain a corrected point xcorr in the same way. A symmetric correction
moves both x and x′ minimally so that the corrected pair (xcorr,x

′
corr) lies ex-

actly on the epipolar curve defined by (10). In practice, the first-order Sampson
approximation is often used as a computationally efficient measure of epipo-
lar consistency, but in this note we focus on the projection-based correction
described above.

Conventional stereo triangulation

Consider a standard horizontal stereo camera with baseline length b and focal
lengths f and f ′ for the left and right cameras, respectively. Let uL and uR be
the horizontal image coordinates of a corresponding point in the left and right
images. The disparity d is defined by

d = uL − uR.

If the two cameras are rectified and share the same focal length f = f ′, the
depth Z of the point in front of the camera is given by the classic formula

Z =
fb

d
. (14)

This conventional triangulation requires reliable feature detection and match-
ing between the two images. On flat, textureless surfaces (such as floors or
tabletops), feature points are scarce and outliers are likely to occur, which makes
robust stereo matching difficult.

Pinhole camera model and pattern–projector-based trian-
gulation

For completeness, we restate the pinhole camera model. For a 3D point X =
(X,Y, Z)⊤ and its image point u = (u, v, 1)⊤, we have

λ

u

v

1

 = K
[
R t

]

X

Y

Z

1

 , (15)
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where K is the intrinsic parameter matrix, R is a rotation matrix, and t is a
translation vector.

In the proposed method, we replace one of the cameras by a structured-light
pattern projected from a smartphone display, and treat the grid intersections
of the projected pattern as virtual feature points on the surface. This enables
triangulation even on weakly textured surfaces. The detected grid intersections
are further refined using the epipolar-based correction described above, and
the resulting corrected correspondences are fed into the linear triangulation
framework based on (2).

3 Smartphone-based structured-light triangula-
tion

In this section we describe a triangulation method that uses a smartphone both
as a projector and as a geometric reference. The smartphone is placed above a
flat surface (e.g. the floor or a tabletop) with its display facing downward. The
display shows a grid pattern, and each grid intersection is treated as a virtual
light source on the display plane.

Figure 1 illustrates the geometry in a two-dimensional cross-section. The
rectangular shape represents the smartphone display, which is modeled as a
planar surface at a fixed height above the ground plane. The point labeled
depth is the orthogonal projection of a scene point onto the display normal, and
the slanted segment labeled p represents one of the rays from the scene point to
a particular pixel on the display.

We introduce a world coordinate system whose z–axis is perpendicular to
the ground plane. The ground plane is written as

Πground : z = 0,

and the smartphone display is modeled as a parallel plane

Πdisp : z = h,

where h > 0 is the distance (“depth”) between the display and the ground. A
pixel on the display with 2D display coordinates (ud, vd) is mapped to a 3D
point

S(ud, vd) = (Xd(ud, vd), Yd(ud, vd), h)
⊤

on the display plane, where (Xd, Yd) are obtained from the known physical size
and resolution of the screen.

For a point X = (X,Y, 0)⊤ on the ground plane, the line segment connecting
S(ud, vd) and X is one of the rays shown in Fig. 1. In the actual system, the
intersection points of the projected grid with the ground are extracted from the
captured image (after LoG filtering and skeletonization), and they are matched
to the corresponding grid intersections on the display. Thus, for each detected
grid intersection on the ground we obtain a pair(

S(ud, vd), X
)
,

which forms a triangle together with the display normal. The height h corre-
sponds to the distance labeled depth in the figure.
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Figure 1: Cross-sectional view of the smartphone-based triangulation setup.
The smartphone display is modeled as a plane above the ground. The vertical
segment (depth) represents the distance h between the display and the ground,
and the slanted segment p is a ray connecting a display pixel to a point on the
surface.

Once the relative pose between the smartphone (display + front camera) and
the global coordinate system is calibrated, these triangles can be used in the
same way as conventional stereo triangulation: each grid intersection provides
a pair of rays (one from the camera center and one from the corresponding
display point), and the 3D position of the surface point is obtained as the
least–squares intersection of these rays. In this way, the smartphone display
acts as a structured-light projector that enables triangulation even on textureless
surfaces.
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