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1 Column-wise 2D DTW and River-path Ex-
traction

1.1 Setting

We consider two surfaces A and B, given as discretized depth maps
A e RPX9, B e R™",

Here Ay ; denotes the depth value at row k and column 4 of A. We treat each
column as a vertical profile:
Ay By,j
Ai = S Rp, B]' = cR".
A B

D, r.J

Our goal is to measure the similarity between these column profiles using Dy-
namic Time Warping (DTW), and then to extract a consistent column-wise
correspondence between A and B.

1.2 One-dimensional DTW distance

Let
T = (xh...,xm)T eER™ y= (yl,...7yn)—r e R"

be two one-dimensional sequences. We define the local cost
c(k, ) := |z — yel

(for example, |z3 — y¢|? could also be used).
A warping path w is a finite sequence of index pairs

w = ((ir,51), - (ir, L))
satisfying
e Boundary conditions: (i1, j;1) = (1,1) and (ir,jr) = (m,n).
e Monotonicity: ;41 > i and jz41 > j; for all ¢.

e Step constraints:

(itJrl - ity jt+1 _jt) € {(1,0), (07 1), (1> 1)}



Then the DTW distance between z and y is defined as
L
DTW(z,y) Z Ztv]t

1.3 Column-wise DTW distance matrix

For the depth maps A and B, we compute the DTW distance between each pair
of column profiles:

D;;:=DTW(4;,B;), i=1,...,¢ j=1,....s
This yields a matrix
D € R9*%,

where D; ; measures the dissimilarity between column i of A and column j of
B (smaller values mean higher similarity).
We regard D as a function on the discrete grid

D: {1,...,q} x{1,...,s} = Rxo.

If we visualize D; ; as a height value over this grid, D defines a “distance land-
scape” in three dimensions: small values correspond to valleys, and large values
to ridges.

1.4 Simple column-wise mapping by local minima

As a simple baseline, for each i we pick the column index ajo.(i) of B that
minimizes the DTW distance:

aloc (i) := arg 1g1j11<1 D; ;.

This defines a mapping

aoe : {L,...,qt = {1,...,s}, 1 aioe(t),

which we interpret as “the column index of B corresponding to column ¢ of A”.

The points
(Z 1oc (1 )) € {1 '~7Q} X {1»"'75}

then form a discrete curve on the grid. If A and B are samples of smooth surfaces
that are geometrically related, we can regard this curve as an approximation of
a valley in the distance landscape D.

However, in the presence of noise or local artifacts, ajo. () may jump abruptly
and fail to reflect the expected geometric continuity. To obtain a single smooth
valley, we next formulate a global optimization directly on the matrix D.



2 Second-layer DTW on the column-wise dis-
tance matrix

2.1 River path as a warping path on D
We interpret the DTW distance matrix

Di,j = ])’I‘V\/Y(Al7 B7)

as a discrete distance landscape on {1,...,¢} x {1,...,s}. Small values of D; ;
form valleys (river beds), while large values form ridges. Our goal is to extract a
single, coherent river path that runs along a valley of D and encodes a consistent
column-wise correspondence between A and B.

We define a river path as a discrete sequence of grid points

w = ((ir,41), (i2, J2), - - > (ir, jr)),
satisfying the usual DTW constraints:
e Boundary conditions:
iw=1, ip=gq, 1<ji<s, 1<, <s.

That is, the path starts on the first column index of A and ends on the
last column index of A, while the column index of B is free on both ends.

e Monotonicity:
41 > U, Jtr1 > Ji (t=1,...,L—1).

e Step condition:

(it-‘rl — i, jt-i-l - .]t) € {(170)7 (Ov 1)7 (17 1)}a

i.e., from each point the path can move only “down”, “right”, or “down-
right” in the (i, j)-plane.

Given such a path, its cost is defined by summing the matrix values along

the path,
L

C(U)) = ZDit,jt’
t=1
The optimal river groove is then defined as the minimum-cost path

w” := argmin C'(w),
w
where the minimization is taken over all admissible paths satisfying the bound-
ary, monotonicity and step conditions above.
Once a path w* is obtained, we can interpret it as a mapping from columns
of A to columns of B. For each ¢ € {1,...,q}, we collect all indices ¢ such that
i = 1 and define, for example,

L S
a(i) == #{t:iy =i} t;ijt7



i.e., we take the average j-index along the path for a fixed i. This yields a
(possibly non-integer) correspondence

a:{1,...,q} = [1,s],

which represents the river-bed alignment between the columns of A and those
of B.

2.2 Dynamic-programming computation

The optimal river path w* can be computed by a standard dynamic-programming
scheme, which is formally identical to the usual DTW recursion. We define an
accumulated cost matrix F' € R?7*% by

Fi; = Dij+min(Fi_y;, F;j_1,F_1,-1),

with suitable boundary initialization. For example, if we fix the starting point
at (1,1) and the ending point at (g, s), then

Fi1=Dy;,
Fii1=D;1+F_1, (i=2,...,q),
Fij=Dij+F 1 (=2...,9),

and the above recursion is applied for ¢ > 2, j > 2. In this case the total cost
of the optimal path is simply

C(w*) =F, .

If we want to allow a free endpoint on the last row, i.e., any (q,j) with
1 <7 < s, we first compute F' as above and then choose the best endpoint by

Jend = argmin I ;,
1<j<s
and backtrack from (g, jend) to a starting point (1, jstart) by repeatedly moving
to the predecessor that achieves the minimum in the recursion. This backtrack-
ing yields the optimal river path w*.

2.3 Greedy river-tracing variant

In practice, a simpler greedy variant can also be used. Starting from some initial
grid point (i1, j1), for example a local minimum in the first few rows of D, we
recursively move to the neighbor with the smallest local cost:

(it41,Jeg1) =  argmin D, ,,
(u,v)€S (it,5t)

where

S(ig, ) = { (e + 1,50), (i, e + 1), Ge+ 1, + D} ({1,...,q} x {1,...,s}).

This procedure follows the local valley of the distance landscape and often
produces a visually reasonable river groove with much lower computational
cost, at the expense of losing the global optimality guarantee of the dynamic-
programming solution.



3 Interpretation and limitations

If A and B are samples of smooth surfaces that approximately correspond un-
der some geometric transformation (e.g. translation or gentle deformation), we
expect the optimal river path w* (and the induced mapping a) to recover the
column-wise alignment of A and B, up to discretization and noise.

On the other hand, the method may degrade in the following situations:

e the surfaces exhibit sharp folds or discontinuities,

e the dominant structure is along the row direction rather than the column
direction,

e the noise level is very high, causing multiple competing valleys in D.

In such cases, one may need to consider higher-dimensional DTW extensions
that allow warping in both row and column directions simultaneously, or to
combine the present column-wise scheme with a row-wise or patch-wise DTW
formulation.



