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1 Column-wise 2D DTW and River-path Ex-
traction

1.1 Setting

We consider two surfaces A and B, given as discretized depth maps

A ∈ Rp×q, B ∈ Rr×s.

Here Ak,i denotes the depth value at row k and column i of A. We treat each
column as a vertical profile:

Ai :=

A1,i

...
Ap,i

 ∈ Rp, Bj :=

B1,j

...
Br,j

 ∈ Rr.

Our goal is to measure the similarity between these column profiles using Dy-
namic Time Warping (DTW), and then to extract a consistent column-wise
correspondence between A and B.

1.2 One-dimensional DTW distance

Let
x = (x1, . . . , xm)⊤ ∈ Rm, y = (y1, . . . , yn)

⊤ ∈ Rn

be two one-dimensional sequences. We define the local cost

c(k, ℓ) := |xk − yℓ|

(for example, |xk − yℓ|2 could also be used).
A warping path w is a finite sequence of index pairs

w =
(
(i1, j1), . . . , (iL, jL)

)
satisfying

• Boundary conditions: (i1, j1) = (1, 1) and (iL, jL) = (m,n).

• Monotonicity: it+1 ≥ it and jt+1 ≥ jt for all t.

• Step constraints:

(it+1 − it, jt+1 − jt) ∈ {(1, 0), (0, 1), (1, 1)}.
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Then the DTW distance between x and y is defined as

DTW(x, y) := min
w

L∑
t=1

c
(
it, jt

)
.

1.3 Column-wise DTW distance matrix

For the depth maps A and B, we compute the DTW distance between each pair
of column profiles:

Di,j := DTW(Ai, Bj), i = 1, . . . , q, j = 1, . . . , s.

This yields a matrix
D ∈ Rq×s,

where Di,j measures the dissimilarity between column i of A and column j of
B (smaller values mean higher similarity).

We regard D as a function on the discrete grid

D : {1, . . . , q} × {1, . . . , s} → R≥0.

If we visualize Di,j as a height value over this grid, D defines a “distance land-
scape” in three dimensions: small values correspond to valleys, and large values
to ridges.

1.4 Simple column-wise mapping by local minima

As a simple baseline, for each i we pick the column index aloc(i) of B that
minimizes the DTW distance:

aloc(i) := arg min
1≤j≤s

Di,j .

This defines a mapping

aloc : {1, . . . , q} → {1, . . . , s}, i 7→ aloc(i),

which we interpret as “the column index of B corresponding to column i of A”.
The points (

i, aloc(i)
)
∈ {1, . . . , q} × {1, . . . , s}

then form a discrete curve on the grid. If A and B are samples of smooth surfaces
that are geometrically related, we can regard this curve as an approximation of
a valley in the distance landscape D.

However, in the presence of noise or local artifacts, aloc(i) may jump abruptly
and fail to reflect the expected geometric continuity. To obtain a single smooth
valley, we next formulate a global optimization directly on the matrix D.
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2 Second-layer DTW on the column-wise dis-
tance matrix

2.1 River path as a warping path on D

We interpret the DTW distance matrix

Di,j := DTW(Ai, Bj)

as a discrete distance landscape on {1, . . . , q} × {1, . . . , s}. Small values of Di,j

form valleys (river beds), while large values form ridges. Our goal is to extract a
single, coherent river path that runs along a valley of D and encodes a consistent
column-wise correspondence between A and B.

We define a river path as a discrete sequence of grid points

w =
(
(i1, j1), (i2, j2), . . . , (iL, jL)

)
,

satisfying the usual DTW constraints:

• Boundary conditions:

i1 = 1, iL = q, 1 ≤ j1 ≤ s, 1 ≤ jL ≤ s.

That is, the path starts on the first column index of A and ends on the
last column index of A, while the column index of B is free on both ends.

• Monotonicity:

it+1 ≥ it, jt+1 ≥ jt (t = 1, . . . , L− 1).

• Step condition:

(it+1 − it, jt+1 − jt) ∈ {(1, 0), (0, 1), (1, 1)},

i.e., from each point the path can move only “down”, “right”, or “down-
right” in the (i, j)-plane.

Given such a path, its cost is defined by summing the matrix values along
the path,

C(w) :=

L∑
t=1

Dit,jt .

The optimal river groove is then defined as the minimum-cost path

w∗ := argmin
w

C(w),

where the minimization is taken over all admissible paths satisfying the bound-
ary, monotonicity and step conditions above.

Once a path w∗ is obtained, we can interpret it as a mapping from columns
of A to columns of B. For each i ∈ {1, . . . , q}, we collect all indices t such that
it = i and define, for example,

a(i) :=
1

#{t : it = i}
∑
t:it=i

jt,
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i.e., we take the average j-index along the path for a fixed i. This yields a
(possibly non-integer) correspondence

a : {1, . . . , q} → [1, s],

which represents the river-bed alignment between the columns of A and those
of B.

2.2 Dynamic-programming computation

The optimal river path w∗ can be computed by a standard dynamic-programming
scheme, which is formally identical to the usual DTW recursion. We define an
accumulated cost matrix F ∈ Rq×s by

Fi,j = Di,j +min
(
Fi−1,j , Fi,j−1, Fi−1,j−1

)
,

with suitable boundary initialization. For example, if we fix the starting point
at (1, 1) and the ending point at (q, s), then

F1,1 = D1,1,

Fi,1 = Di,1 + Fi−1,1 (i = 2, . . . , q),

F1,j = D1,j + F1,j−1 (j = 2, . . . , s),

and the above recursion is applied for i ≥ 2, j ≥ 2. In this case the total cost
of the optimal path is simply

C(w∗) = Fq,s.

If we want to allow a free endpoint on the last row, i.e., any (q, j) with
1 ≤ j ≤ s, we first compute F as above and then choose the best endpoint by

jend := argmin
1≤j≤s

Fq,j ,

and backtrack from (q, jend) to a starting point (1, jstart) by repeatedly moving
to the predecessor that achieves the minimum in the recursion. This backtrack-
ing yields the optimal river path w∗.

2.3 Greedy river-tracing variant

In practice, a simpler greedy variant can also be used. Starting from some initial
grid point (i1, j1), for example a local minimum in the first few rows of D, we
recursively move to the neighbor with the smallest local cost:

(it+1, jt+1) := argmin
(u,v)∈S(it,jt)

Du,v,

where

S(it, jt) :=
{
(it + 1, jt), (it, jt + 1), (it + 1, jt + 1)

}
∩
(
{1, . . . , q} × {1, . . . , s}

)
.

This procedure follows the local valley of the distance landscape and often
produces a visually reasonable river groove with much lower computational
cost, at the expense of losing the global optimality guarantee of the dynamic-
programming solution.
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3 Interpretation and limitations

If A and B are samples of smooth surfaces that approximately correspond un-
der some geometric transformation (e.g. translation or gentle deformation), we
expect the optimal river path w∗ (and the induced mapping a) to recover the
column-wise alignment of A and B, up to discretization and noise.

On the other hand, the method may degrade in the following situations:

• the surfaces exhibit sharp folds or discontinuities,

• the dominant structure is along the row direction rather than the column
direction,

• the noise level is very high, causing multiple competing valleys in D.

In such cases, one may need to consider higher-dimensional DTW extensions
that allow warping in both row and column directions simultaneously, or to
combine the present column-wise scheme with a row-wise or patch-wise DTW
formulation.
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